URPL / LA 622: Applications of Geographic Information Systems in Planning

Fall 2016

University of Wisconsin – Madison
Department of Urban and Regional Planning

Instructor: Aslı Göçmen, Assistant Professor, Urban and Regional Planning
202 Old Music Hall, goçmen@wisc.edu, 608-265-0789

Lecture: Tuesdays 9:30 – 10:45 am, 208 Old Music Hall

Lab: Tuesdays 12:00 – 2:30 pm or Thursdays 9:00 – 11:30 am; 109 Old Music Hall

Office hours: Tuesdays 2:30 3:30 pm and Thursdays 11:45 am – 12:45 pm

Course Overview
The nature of urban planning issues and practices are predominantly spatial. Thus, Geographic Information Systems (GIS), which enable planners to gather, store, manipulate, and analyze spatial data, have earned an important role among planners and policy-makers in recent years. GIS knowledge and skills have become an indispensable part of numerous planning jobs in both public and private sectors; indeed, on its website, the American Planning Association lists “mastery of geographic information systems software” as an important skill of successful planners. This course is designed to explore planning-related GIS data, applications, analytical tools, and issues and provide students with knowledge and skills they can use in a variety of planning-relevant positions.

Learning Objectives
This course intends to give students a solid foundation on GIS principles and skills. It aims to provide students with the knowledge, skills, and values required for planning practice. More specifically, these knowledge, skills and values include the following:

Planning knowledge: As an outcome of this course, students are expected to develop a better understanding of how GIS is being and can be used in planning and implementation issues in planning agencies. Students are also expected to be able to explain the nature, characteristics, and possible ways of analyzing spatial data relevant to planning and have heightened knowledge of effectively communicating geospatial data and analyses.

Planning skills: As an outcome of this course, students are expected to be able to obtain and analyze geospatial data using a range of spatial analysis tools for a number of planning-related practices. More specifically, students will learn how to conduct site selection analysis and land suitability analysis -- both fundamental planning analyses. In addition, the students will further their written, oral, and graphic communication skills.

Planning values and ethics: As an outcome of this course, students will learn how not to lie with maps and consider ethical issues surrounding access and use of geospatial data.
Course requirements and format
We will meet twice a week. For the most part, Tuesday meetings are designed as a combination of lectures, presentations, and discussion of assigned readings. In general, the discussions will be from the assigned readings, but you are encouraged to do further research, suggest other readings, and bring other material to class. Thursday meetings are designated for giving you hands-on experience with accessing, analyzing, and visualizing geospatial data relevant to planning. We will be primarily using ArcGIS in our course.

An introductory GIS class or experience using GIS is a pre-requisite for this class. If you feel that your knowledge or skills are rusty, the first couple of weeks’ review time will be very beneficial to you. Please use this time wisely.

The students are expected to attend and participate in all class meetings, take a test, undertake a research assignment, and complete five lab assignments. Below, you will find more information on each of these requirements.

Course participation refers to all aspects of participation: attendance, and participation in questions and discussions. The emphasis of this requirement is on the quality and quantity of participation in class discussions. While most of the discussions will take place in our lecture sessions, they may not be restricted to the lectures alone, but could take place in the lab sessions and through learn@UW. Please note that if you miss class, it is your responsibility to find out (from fellow classmates) what you missed.

Exam: The aim of the exam is to ensure that you are able to synthesize the topics covered in the lectures related to applications and issues of GIS in planning.

If you have a conflict (e.g., religious observation, scheduled surgery, conference) with the date of the exam, you need to notify me within the first two weeks of the term so that we can arrange a different date for a make-up. If you miss the test without prior notification, you will need to provide proof (e.g., medical emergency) as to why you could not make it. If you need other special accommodations, please also let me know ahead of time.

Research assignment: A small research project is designed so that you will get further familiarity with how GIS is used in planning applications. The research assignment is about web-based planning-relevant GIS applications or planning support systems. You will present your application in class and also submit a report. I will be providing further guidance on the format of these studies in the upcoming weeks.

Lab assignments: The course consists of five lab assignments emphasizing planning-related GIS applications and spatial data (one of the lab assignments may be substituted by a lab quiz depending on my assessment for such a need). The intent is for you to take the skills you learned / reviewed and apply them to different situations and datasets. Remember that while you may discuss these assignments with fellow students, you are expected to work on them individually unless otherwise noted.

The assignments are designed such that you can complete most of the work (if not all) during lab time. However, you are expected to be familiar with topics the assignments will make use of. I will provide information on relevant topics ahead of time so that before coming to class, you can review material if you need to. If you have reviewed related topics and still find that you are spending significant amounts of time on the assignments, please talk with me or with fellow students and do not wait until the last minute to tackle the assignments. We will have lab time and office hours between when you receive the
assignment and need to submit it, so take advantage of those times. You will have at least one week to complete the assignments.

Grading and Evaluation
The students will be evaluated on all of the four course requirements described above. Course grades will be based on the following:

- Course participation: 10%
- Exam: 20%
- Research assignment: 10%
- Lab assignments: 60%

Final grades are assigned based on the following scale: 93-100 – A; 88-92 – AB; 83-87 – B; 78-82 – BC; 70-77 – C, 60-69 – D; and 0-59 – F.

Please note that:
- Attending all classes but not speaking up will result in loss of many points in your participation grade.
- The lab assignments will be evaluated based on both correct findings as well as the discussion of the findings. There may be other expectations in the assignments that I will provide. Each lab assignment will be worth between 10 and 15 points.
- Late submissions of lab assignments will be penalized by a point deduction each day that they are late; no late assignments will be accepted after they have been graded and returned to students.
- Guidelines on presentation and report on the research assignment will be provided later in the term.

Course Material
If you do not have one already, I recommend that you own a book on GIS fundamentals for your reference. Such a book could help you refresh and enhance your knowledge on the theoretical and conceptual background of GIS. There are some excellent texts. My first suggestion would be Bolstad’s text (Bolstad, Paul. 2016 (5th ed.). *GIS Fundamentals: A First Text on Geographic Information Systems*, White Bear Lake, MN: Eider Press. The previous version (2012) would be just fine as well and since UW-Madison library does not have the latest version, chapters from 2012 book will be assigned. For those needing a workbook on ArcGIS, I suggest an ESRI publication: Law, Michael and Amy Collins. 2015. *Getting to Know ArcGIS Desktop*, Redlands, CA: ESRI Press.

All course text can be accessed at Geography Library’s Reference desk. Several of the course materials can be accessed through Learn@UW as well. Learn@UW will be a primary source of information, where you will find assigned readings and assignments, and relevant information.

The chapters mentioned in the syllabus come from the following books:

Academic Integrity
I expect high academic integrity from each student. It is assumed that students are familiar with the policies, definitions, and procedures regarding academic misconduct, as specified in UWS 14. Details of the policies, including your rights and responsibilities can be found at: http://www.wisc.edu/students/saja/misconduct/UWS14.html Under the policies regarding academic misconduct, an instructor has discretion as to which penalties will be imposed in the case of academic misconduct. I reserve the right to assign a failing grade to a particular assignment, report the incidence to the Student Advocacy and Judicial Affairs office within the Dean of Students Office, or impose other penalties.

Please remember that cheating and using another person's ideas, words, or research and presenting it as one's own by not properly crediting the originator (including the Web) are two common acts of academic misconduct.

Civility in the Classroom
I expect that you respect your classmates (especially those that are presenting), guest speakers, and instructor, and that you not engage in non-class e-activities (e.g., checking and responding to e-mail, texting, checking Facebook and Twitter) during our meetings. Engagement in non-class e-activities is rude to both your classmates and your instructor, and is an impediment to your processing and retaining class-related information. If you engage in non-class activities, you will be asked to stop. If you repeatedly engage in non-class e-activities, you will be asked to leave the classroom and will receive a penalty on your participation grade.

Special Accommodations
If you have a disability that I need to be aware of, please notify me and provide proof of it within the first two weeks of class.
Course Schedule
Please note that the schedule and readings are subject to changes as we progress in the term.

Week 1: September 6 - 8
Lec. & lab: Introduction: Course overview; individual introductions; introduction to applications of GIS in planning; review of GIS fundamentals (characteristics and models of geospatial data, map projections and coordinate systems, geospatial data entry, relational DBMS, precision and accuracy)

Week 2: September 13 - 15
Lecture: GIS Fundamentals (in ArcGIS) continued
Readings: Maantay and Ziegler, part II (skim through to get an idea)
http://www.wisc.edu/writing/Handbook/QuotingSources.html
suggested: Bolstad, chapter 2, 3, 4, 8 (up to page 307)
suggested: Kimerling et al., pp 19-98 (skim through if additional info needed)
Review necessary chapters from Law and Collins
Lab: GIS fundamentals in ArcGIS continued

Week 3: September 20 - 22
Lecture: Planning-relevant Spatial Data: Census and TIGER
Readings: Monmonier, chapter 10
Huxhold, chapter 4
Lab: Accessing and working with Census data

Week 4: September 27 - 29
Lecture: Planning-relevant Spatial Data
Guest Lecturer: Jaime Stoltenberg, UW Robinson Map Library
Readings: Bolstad, chapter 7
Lab: Accessing planning-relevant spatial data
Due: Lab Assignment: Mapping Dane County Socio-demographic Characteristics

Week 5: October 4 - 6
Lecture: Spatial Analysis for Planners
Readings: Bolstad, chapter 9 (and skim through 10, 11, 12, 13)
Lab: Analyzing environmental justice issues in Dane County

Week 6: October 11 - 13
Lecture: Spatial Analysis continued
Lab: Analyzing environmental justice issues in Dane County
Due: Lab Assignment: Assessing Environmental Justice Issues in Dane County

Week 7: October 1-8 - 20
Lecture: GIS and Mapping: Pitfalls for Planners
Robinson et al., chapter 18 (chapters 19-26 are also good sources for map design)
Lab: Site selection and map design
Week 8: October 25 - 27

Lecture: GIS in Planning: Applications, Opportunities, Threats, and Emerging Trends
Readings: Huxhold, chapter 3 (skim through)
 Maantay and Ziegler, part II (select a chapter of interest)

Lab: Site selection and map design continued

Week 9: November 1 - 3

Lecture: (GIS-based) Planning Support Systems
Readings: Brail, chapters 1, 2, 10, 11
 Brail and Klosterman, chapter 1.

Lab: Mash-ups.
 Guest lecturer: AJ Wortley, State Cartographer’s Office & David Hart, UW – Sea Grant

Due: Lab Assignment: Residential Site Selection and Map Design

Week 10: November 8 - 10

Lecture: GIS Implementation & Issues for Planning Agencies
Readings: O’Looney, chapters 10, 11

Lab: Student presentations on Web-based GIS or PSS

Week 11: November 15 - 17
Lecture: EXAM
Lab: Working with ArcGIS Extensions (Spatial Analyst Extension in particular)
Due: Web-based GIS / PSS report

Week 12: November 22 - 24
Lecture: Public Participation and GIS in Planning, review of exam
Lab: NO lab (Happy Thanksgiving!)

Week 13: November 29 – December 1
Lecture: GIS in Planning: Perspectives from the Public Sector
Guest Lecturer: Curt Kodl, Dane County, Planning Department
Lab: Introduction to Land Suitability Analysis
Due: Land Development Exercise and Planning-related Extension Reflections

Week 14: December 6 - 8
Lecture: GIS in Planning: Perspectives from the Private Sector
Guest Lecturer: Spencer Gardner, Toole Design Group
Lab: Land Suitability Analysis

Week 15: December 13 - 15
Lecture: Reactions to GIS in Planning Practice; Land Suitability Analysis continued
Lab: Land Suitability Analysis continued, course wrap-up
Due: Lab Assignment: Land Suitability Analysis (4 pm, Friday December 18)